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21. Are there economies of scale in mail
processing? Getting the answers from a
large-but-dirty sample*

Lawrence Fenster, Diane Monaco, Edward S. Pearsall
and Spyros Xenakis

1. INTRODUCTION

In this chapter we present econometric evidence that United States Postal Service (USPS)
mail processing plants are mostly operated at levels where the returns to density and scale
are decreasing. The evidence is derived from production functions fit as stochastic switch-
ing regressions to large panel samples of pieces, work hours, capital usage, delivery points,
delivery units and other plant-level information mostly drawn from USPS’s Management
Operating Data System (MODS). Decreasing returns were found for production func-
tions defined for every aggregate of pieces handled by shape, for pieces fed in most single
automated, mechanical and manual processes, and when piece-handlings were divided
into inbound and outbound sub-streams.

Samples drawn from MODS are problematic because they exhibit anomalies at fre-
quencies suggesting that they are a dirty mix of good observations and occasional report-
ing mistakes. Our econometrics employs a Maximum Likelihood (ML) estimator for
fitting a two-regime stochastic switching regression model as first proposed by Quandt
(1972). The motivation for this approach is that the good observations are generated by
the production function, while the bad observations are the result of data collection fail-
ures consistent with a different regime.

Our estimates indicate that mail processing is primarily an industrial process rather
than a network support activity. Returns to scale typically exceed returns to density. This
result is anomalous for an activity like transportation that directly supports a distribution
network, but it is readily explained for an industrial process as the effect of production
smoothing. USPS plants serving larger and more diverse segments of the network appar-
ently benefit from longer continuous flows of mail through the plants.

Our results also show that scale is only one of many statistically significant determi-
nants of productivity among USPS processing plants. Other determinants include the
types of delivery points served by a plant, the composition of the mail stream passing
through the plant, the ratio of originating to destinating mail in a plant’s service area,
the configuration of related equipment/processes and the skill profile of a plant’s
work force.
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2. MAIL PROCESSING

USPS plants process mail in separate outgoing and incoming streams for letters and cards,
flats, parcels and Priority Mail.1 Outgoing mail is cancelled, barcoded and sorted for
transportation to other processing centers or for insertion into the local incoming stream.
Incoming mail is sorted at least to the carrier-route level. Most incoming letter mail is
further sorted to the delivery sequence on the routes. Workshared mail is inserted at
various points in the processing streams. Processing of letters and flats, and some pro-
cessing of parcels and Priority Mail, is now largely done with automated and/or mecha-
nized equipment that is specialized by shape. Manual processing is reserved for pieces that
either cannot be fed to automated equipment or have been rejected by the automated
processes.

Mail processing is typically viewed as a network support activity; first, because sorting
the mail is essential for moving it along the USPS network and, second, because process-
ing plants are located at hubs of the network and serve as transshipment points. In testi-
mony before the US Postal Regulatory Commission (PRC), the principal USPS witness
compared mail processing to transportation along the network (Bozzo, 2006).

However, there is an alternative way to view mail processing that describes the activity
as a conventional industrial process. In this alternative view, mail processing plants are
like generating plants on an electrical network. A generating plant is certainly affected by
activity on the network, but its output is solely measured by the power it produces. The
number of customers or the geographic area served by the electrical network are not con-
sidered outputs of the plant. A similar view of mail processing would confine the mea-
sures of a plant’s output to the volumes and shapes of mail processed. The levels of
network variables, such as the number of delivery points and the number of delivery units
served by the plant, may have important effects on a plant’s productivity, but are not
included among the plant’s outputs. This view conforms well to the cost model used by
USPS and the PRC in postal rate proceedings. The cost model treats mail processing costs
as separable by shape with a single driver – piece handlings.

The distinction between mail processing as a network activity and as an industrial
process is important because the two views lead to divergent predictions of the effects of
expanding the network on the productivity of a plant.

When treated as additions to output, more delivery points and delivery units would lead
to a decrease in the volume of mail that is processed by a fixed work force and comple-
ment of equipment at a plant. This happens when additional runs are needed to sort to
more divisions. Then, more piece handlings are required to sort a given volume of mail.
Expanding the network may also disproportionately increase the setup and teardown
times for processing runs, especially with automated equipment. For example, more bins
would have to be set up and cleared at the beginning and end of each run to sort the same
volume of mail.

Both of these effects are likely to be small. The processing schemes used by USPS plants
all involve fixed integer numbers of passes through the machines. For example, delivery
sequence sorting of letters is mostly done in two passes through the Distribution Bar
Code Sorting (DBCS) machines. New delivery points or delivery units are usually
accommodated by increasing the number of utilized bins rather than by increasing the
number of passes and piece handlings. Adding bins increases setup and teardown time.

316 Accounting and cost



But this time is only a small fraction, typically less than 10 percent, of the total time for
a processing run.

When mail processing is viewed as an industrial process whose output cannot be stored,
the network output variables indirectly represent the limitations on continuous operations
imposed by a plant’s schedule of arrivals and dispatches. The productivity of electric gen-
erating plants improves when the plants are connected to larger networks by the expan-
sion of power grids. Productivity improves because the plants can generate electricity at
efficient levels over longer continuous periods of time. Mail processing is also done most
efficiently in plants where the various processes can be conducted almost continuously
with few interruptions. When production is interrupted, the inevitable result is a decline
in productivity due to the temporary forced idleness of both labor and capital.

USPS plants serving larger and more diverse segments of the network are often the
beneficiaries of smoother flows of mail through the plant. Mail processing can be more
efficient in these plants because the various processes can be conducted in longer unin-
terrupted runs. A plant serving a small number of delivery points and delivery units will
find it hard to schedule arrivals and dispatches to create a continuous flow of pieces
through the plant. As the number of delivery points and delivery units grows, it becomes
possible (up to a point) to smooth the schedule so that the same volumes pass through the
plant over longer uninterrupted periods of time. This can be done by deferring the pro-
cessing of incoming mail to delivery units that are nearby and to routes, such as subur-
ban residential routes, where deliveries are made later in the day.

Mail processing has aspects of both a network support activity and an industrial
process, so the controlling aspect must be ascertained empirically.

3. RETURNS TO DENSITY AND SCALE

For distribution networks it is customary to distinguish between returns to density, which
describe the effects of changing inputs proportionately with the network fixed, and
returns to scale, which describe the effects with the network variable. Returns to density
and scale as defined for the USPS network directly relate to current issues of costing and
plant consolidation.

Returns to density and scale in mail processing have been investigated for more than 30
years, with conflicting results. In specific density/scale studies and in studies that have
attempted to develop cost-based rates in USPS postal rate proceedings before the PRC,
both increasing and decreasing returns have been found.2

Beginning in 1997, USPS has presented econometric studies in five successive rate pro-
ceedings to support the contention that mail processing labor variabilities are less than
100 percent (US Postal Rate Commission, 1998, 2001, 2002, 2006; US Postal Regulatory
Commission, 2007). This evidence has been rejected by the PRC, which continues to use
variabilities close to 100 percent based on an assumption that work hours vary mostly in
proportion to volumes processed.

Labor variability is defined as the derived demand elasticity of labor with respect to
pieces fed or handled in various processing operations. The importance of the variability
estimates for US rate-setting is that they are used to derive the marginal costs of process-
ing, which form part of the per unit attributable costs of the various subclasses of mail.
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These unit attributable costs have been legislated as rate floors for most subclasses.
Marginal costs are also essential components of the Ramsey pricing formulas for welfare-
maximizing rates. However, the PRC does not rely upon the formulas for recommending
rates.

Variabilities are not the same thing as returns to density or scale, but the concepts are
closely related. Variabilities of less than 100 percent are likely to accompany increasing
returns to density; decreasing returns to density signal that variabilities exceed 100 percent.

In 2006, USPS sought PRC approval of the models and methods of analysis used in
ongoing studies of possible restructurings of its network (US Postal Rate Commission,
2006). The cost functions for these models describe marginal costs for mail processing that
decline in steps to approximate the same less-than-100-percent variabilities rejected by the
PRC in rate proceedings. The importance of the variability estimates for the USPS
network studies is that the declining marginal cost functions will drive the results towards
restructurings that consolidate processing plants. This occurs because the cost of pro-
cessing a given volume of mail, as predicted by the USPS’s cost functions, always
decreases when consolidation leaves the network with fewer but larger plants.

4. THE MODS DATA

We derive process- and shape-level economies of density and scale from restricted
translog production functions fit to panel samples aggregated from MODS.3 The samples
consist of quarterly observations from GFY 1999 to GFY 2005 of man-hours (HRS),
total pieces fed (TPF), total pieces handled (TPH) and first-handled pieces (FHP) for
various manual and machine-specific operations by shape (letters, flats and parcels) at up
to 368 USPS processing plants. The MODS data has been supplemented by capital indices
(QICAP) derived from USPS equipment registries and facility records, and by other plant
statistics drawn from USPS records by Bozzo, including the numbers of various kinds of
delivery points (DP) and delivery units (DU) served by the plant. The MODS data have
also been matched to volume statistics from other USPS sources for the areas served.
Altogether, the data set includes several alternative measures of processing outputs,
matching observations for work hours, capital services and network coverage, and enough
information to fashion controls for mail flow composition, plant and process con-
figuration, labor force composition and the distribution of delivery points by type to
support econometric modeling of production functions by shape and by process.

In releasing the MODS data, USPS has followed the practice of not providing any
information that could be used to specifically identify individual plants. This makes it
impossible to supplement the MODS observations with information that could be used
to fashion a complete and unambiguous set of controls for exogenous factors affecting
processing productivities. Among the factors for which we have no direct controls are the
quality of the local postal labor force, the geographic dimensions and demographic char-
acteristics of a plant’s service area, the proximity of the delivery units served by the plant,
the condition of the local ground transportation system, the plant’s air and ground con-
nections, the smoothness (or lack of smoothness) of the plant’s arrival and dispatch
schedules, the age of the plant, its classification by type, its square foot area, number of
floors and other salient physical characteristics. These are major omissions. Nevertheless,
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the basic MODS observations of piece handlings and work hours have been supple-
mented by Bozzo with enough plant-level information to allow us to define variables that
indirectly control for most of the major factors that exogenously affect productivity.

The MODS data includes work hours and labor costs for several broad Labor
Distribution Code (LDC) categories from which nominal labor rates may be derived.
However, these nominal rates cannot be converted to real rates, because a local wage or
cost-of-living index cannot be associated with the plants without identifying them. The
MODS data also contains no information whatsoever that might be used to derive real
rental rates for the different categories of equipment and other capital used in the plants.
These omissions are not important for fitting production functions, but are serious hand-
icaps when the MODS data are used to fit cost functions or derived demand functions.4

Panel samples drawn from MODS are large but known to be dirty because of the
methods used to collect the data. MODS is a real-time USPS reporting system with weak
quality controls at the point of collection and no mechanism for identifying and recover-
ing missing observations. The missing observations are indistinguishable from obser-
vations that are truly zero-valued. The MODS data are collected by work shift and
aggregated in stages by week, accounting period and postal quarter, with missing obser-
vations treated as zero values at each stage. HRS is subject to various kinds of clocking
errors made by employees that mis-assign work hours to processes. QICAP is derived from
USPS equipment inventory registries. The major difficulty with these records is that equip-
ment changes are sometimes registered at times that do not correspond exactly to when the
equipment actually entered or left service. The other explanatory variables in the data set
appear to be much less likely to contain major errors than HRS and QICAP. However, it
is still possible that errors in the other variables may cause some of the data to be bad.

Large-but-dirty samples are an increasingly common result of self-collection schemes
using electronic equipment. The amount of data that can be collected cheaply by these
schemes is often enormous. MODS is typical. The samples we have extracted often
contain over 8000 observations. Unfortunately, the practice that makes self-collection
cheap is an absence of review and verification as the data are collected. Inevitably, the
samples produced by such schemes contain bad observations because self-collection is
prone to occasional undetected malfunctions.5

The observations of HRS, TPF (or TPH) and FHP for the various processes all contain
apparent errors and anomalies that have been described and documented in recent PRC
Decisions (US Postal Rate Commission, 1998, 2001, 2002, 2006). The anomalies mostly
consist of unrealistic extreme values for TPF/HRS, occasional incompatible values for
TPF, TPH and FHP, and missing values for either HRS or TPF (or TPH) but not both.
The anomalies are more frequent for processes that are starting up or shutting down at a
plant. The patterns suggest that the bad data in the samples are the result of intermittent
reporting mistakes.

Bozzo (2006) and Roberts (2006) have attempted to deal with the dirty data by using
screens to delete the grossly erroneous observations and, in some cases, by applying an
Instrumental Variables (IV) estimator. Both approaches require auxiliary assumptions
and non-sample information. Bozzo’s screens remove observations from the samples used
to fit his equations at frequencies that range from about 0.7 percent to over 20.0 percent.
The screens cannot identify and remove all of the bad data in the samples without also
non-randomly deleting good data.6 This risks creating selection biases in the screened
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sample. Nevertheless, the screens (but not the IV estimator) are compatible with an
assumption that the bad data are intermittent. We have not screened the MODS data for
our work except to remove observations when the information needed to construct the
variables of the production function is incomplete.

5. THE STOCHASTIC SWITCHING REGRESSION MODEL

Our research employs a Maximum Likelihood (ML) estimator to fit two-regime linear
stochastic switching regressions with exogenous fixed-probability independent switching.7

The ML estimator relies only on sample information. The estimates are consistent,
asymptotically normal with a known variance–covariance matrix, and asymptotically
efficient under general regularity conditions as described in standard statistics and econo-
metrics texts (Wilkes, 1962; Maddala, 1977; Judge et al., 1985).

Linear stochastic switching regressions are a natural choice for modeling large-but-
dirty samples that contain an unknown mix of ‘bad’ and ‘good’ observations. Bad obser-
vations are defined as observations that are not generated by the same linear equation with
the same standard error as the more numerous good observations. Ordinary Least
Squares (OLS) estimates of the production functions will be inconsistent when the good
and bad equations are different if any bad data remains after screening or if the screens
non-randomly remove any good data. However, the ML estimator for the stochastic
switching model makes it unnecessary to identify and delete bad observations from the
sample. Instead, the ML estimates allow us to compute a set of conditional probabilities,
one for each observation in the sample, that correspond to the Bayesian posterior proba-
bilities that the observations are bad (or good).

Many of the kinds of problems that are known to cause OLS estimates to be inconsis-
tent may be viewed as the result of samples generated by an observationally equivalent
linear model. In Pearsall (2007) it is shown that outliers, replaced observations and errors-
in-variables can all be treated as dirty data from an observationally equivalent linear
model. The essential aspect of the bad observations for the ML estimator is that they are
intermittent in the sample.

In our applications the good observations are assumed to be generated by the translog
production function whose parameters and standard error correctly describe the normal
operation of USPS processing plants. The bad observations are assumed to be generated
by a different linear equation with the same form and variables.

The ML estimator yields estimates for the coefficients and standard errors of the
equations for both the bad and good observations, and an estimate of the frequency of
the bad data. The estimates were computed using a special-purpose algorithm embed-
ded as a macro in a set of Lotus 1-2-3 worksheets.8 The algorithm uses the first-order
conditions for a maximum of the log-likelihood function within an iterative process to
simplify and speed the calculation of the estimates. The method for computing the
asymptotic variance–covariance matrix is described in Judge et al. (1985) and Maddala
(1976). The conditional probabilities have been computed and are used to estimate
sample means for the good observations in the MODS samples. The sample means
and the parameter estimates from the good equations are used together to calculate
elasticities.
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6. THE PRODUCTION FUNCTIONS

Shape-level production functions were fit for letter, flat and parcel sorting operations and
for letter cancellation operations. Process-level production functions were fit for auto-
mated, mechanized and manual sorting and cancellation operations. Separate production
functions were also fit for the inbound and outbound components of the letter and flats
sorting operations both by shape and by process.

The processes are identified by the equipment they use:

1. Letter Sorting: Mail Processing Bar Code Sorters (MPBCS), Distribution Bar Code
Sorters (DBCS), Optical Character Readers (OCR) and Manual Letter Sorting.

2. Flats Sorting: Flats Sorting Machine 881 (FSM 881), Flats Sorting Machine 1000 (FSM
1000), Automated Flats Sorting Machine (AFSM 100) and Manual Flats Sorting.

3. Cancellation: Advanced Facer Canceller Machine (AFCS) and Non-AFCS
Cancellation.

4. Parcels Sorting: Small Parcel Bar Code Sorter Other that Priority Mail (SPBS Other),
Small Parcel Bar Code Sorter Priority Mail (SPBS Priority), Manual Parcels Other
than Priority Mail and Priority Mail.

The same general equation form was used for the production functions for the shape-
level and process-level models. The fitted equations are translogs with respect to the labor
and capital inputs and measures of the network served by the plant. The translog was
chosen because it is a general form that imposes few structural restrictions on the shape
of the fitted production functions. In addition, the equations include sets of other con-
trols to account for exogenous factors affecting the productivity of the plants. These
factors are the season of the year, a productivity trend, the distribution of delivery points
by type, the composition of the mail stream for the applicable shape, the ratio of origi-
nating to destinating mail volume for the shape, the availability of equipment and
processes at the plant, and the skill profile of the plant’s labor force.

The dependent variables of the regression equations are natural logarithms of pieces
fed or handled as follows:

ln(FHP) – the aggregate of first-handled pieces for the shape-level sorting operations;
ln(TPH) – total pieces handled for shape-level cancellations;
ln(TPF) – total pieces fed for automated and mechanized sorting processes; and 
ln(TPH) – for manual sorting and cancellation processes.

The MODS data are aggregated to postal quarters of unequal length so weekly aver-
ages of the pieces handled (FHP, TPF and TPH), work hours (HRS), and the capital ser-
vices indices (QICAP) were calculated and used in the regressions. The data for work
hours in MODS exactly match the data for piece handlings, but the capital indices con-
structed by Bozzo match only approximately.9 Two measures of the size of the distribu-
tion network assigned to the plants are used in the production functions. These are the
total number of delivery points (DP) in the plant’s service area, and the total number of
delivery units (DU) assigned to the plant.

The translog component of the production function is as follows:
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	 � !l ln(HRS) � !k ln(QICAP) � !p ln(DP) � !u ln(DU)

� ln(HRS) [!ll ln(HRS) � !lk ln(QICAP) � !lp ln(DP) � !lu ln(DU)]

� ln(QICAP) [!kk ln(QICAP) � !kp ln(DP) � !ku ln(DU)]

� ln(DP) [!pp ln(DP) � !pu ln(DU)] � !uu ln(DU) ln(DU).

We have defined sets of additional control variables for most of the information that
has been matched to the MODS data. The added controls are as follows:

1. Dummy variables for postal quarters 1, 2 and 3. These controls represent systematic
seasonal variations in productivities due to changes in address quality, work force
composition, arrival/dispatch schedules, and so on.

2. An annual trend. The mid-quarter time in years from the beginning of the first quarter
of GFY 1999. This variable captures the effects of gradual progressive changes in pro-
ductivity associated with the adaptation of improved technology and changes in the
education or training of the work force.

3. Delivery point shares. The fraction of DP consisting of various types of delivery
points: CURB – city kerb delivery points, NDCBU – city box units, CENT – city
central delivery points, OTHER – other city delivery points, RB – rural boxes, HCT –
highway contract delivery points, and POBOX – possible P.O. Box deliveries. All
except the share for OTHER are included in every equation.

4. Mail subclass and worksharing shares. The shares of originating, destinating or total
volume by selected subclasses and worksharing categories for the mail shape (letters,
flats or parcels) for the territories served by each plant. Shares of total mail for the
shapes by Revenue, Pieces and Weight (RPW) category have been computed from
USPS volumes passing through the plants. The shares are included in the production
functions except for the share of single-piece first-class letters and flats, and the com-
bined share of first-class and priority parcels to account for the effects of the com-
position of the mail stream on productivity.

5. ln(origin/destination). The natural logarithm of the ratio of originating to destinat-
ing volume for the mail shape. The ratio is computed from volume data rather than
from piece handlings, to avoid including the equation error in the calculation of the
ratio.

6. Shape dummy variables. Shape dummy variables for parcels, Priority Mail and/or can-
cellation were included in many of the equations. These dummies are set to one in
plant/quarters for which TPH for all processes involving these shapes are zero. The
shape dummies are included in the production functions as a means of identifying the
type of processing plant.

7. Process dummy variables. Process dummy variables were defined for all of the auto-
mated and mechanized machine types. These dummies are set to one for a process
under the following two conditions: (1) the plant handles mail of the associated shape,
and (2) TPH is zero for the machine type in the plant/quarter. These variables iden-
tify the machine types that are missing or inactive in each plant/quarter. The pro-
duction functions include those process dummy variables that are appropriate for the
shape of mail, but omit the dummy for the process itself. The process dummies rep-
resent the equipment configuration at the plant for the shape.
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8. Labor skill shares. The MODS data has been supplemented with plant-level work
hours in five LDC categories: Automated letters sorting, Mechanized flats sorting,
Mechanized parcels sorting, Manual sorting and Allied labor. This data was used to
compute work force shares. Two of these share variables are included in each of the
equations to represent the skill distribution of the plant’s work force.

7. ESTIMATES OF RETURNS TO DENSITY AND SCALE

We calculate returns to density and scale by summing output elasticities with respect to
HRS, QICAP, DP and DU. For our translog production functions these elasticities are
linear functions of ln(HRS), ln(QICAP), ln(DP) and ln(DU) that employ the ML esti-
mates of the coefficients for the good equations. The following formulas express returns
to density and scale as elasticities of FHP, TPF or TPH with respect to proportionate
changes in the input and network variables:

Returns to density:

Returns to scale:10

For the process-level equations, TPF or TPH appear in the formulas in place of FHP. The
elasticities in the formulas are derived from the coefficients of the translog production
functions as follows:

El�!l � 2.0!ll ln(HRS) �!lk ln(QICAP) �!lp ln(DP) �!lu ln(DU),
Ek�!k� !lk ln(HRS) � 2.0 !kk ln(QICAP) � !kp ln(DP)� !ku ln(DU),
Ep�!p � !lp ln(HRS) � !kp ln(QICAP) � 2.0 !pp ln(DP) � !pu ln(DU),
Eu�!u � !lu ln(HRS) � !ku ln(QICAP) � !pu ln(DP) � 2.0 !uu ln(DU).

We can see from the formulas that returns to density and scale at a plant will depend some-
what on the levels of HRS, QICAP, DP and DU during the quarter.

Table 21.1 displays returns to density and scale computed using the sample means for
ln(HRS), ln(QICAP), ln(DP) and ln(DU) for the good data in the samples. Increasing
returns to density and scale correspond to estimates in Table 21.1 that are greater than
one; constant returns correspond to estimates that are equal to one; and, decreasing
returns to density and scale correspond to estimates that are less than one. Also shown in
Table 21.1 are t-values for large sample one-tail tests under the null hypothesis that returns
to density and scale are constant. The formula for returns to density is a linear function
of the estimated parameters of the translog equations, so its standard deviations can be
calculated in the usual way from the asymptotic variance–covariance matrix of the ML
estimates.11 For returns to scale the t-values are computed with DP and DU treated as
controls. The t-values are the differences of the estimates from one divided by their asymp-
totic standard deviations.

Estimates are shown in Table 21.1 for all of the shape- and process-level production
functions that we have fit to samples drawn from MODS. Most of our estimated returns

El � Ek
1 � Ep � Eu

�
�ln(FHP) �ln(HRS) � �ln(FHP) �ln(QICAP)
1 � �ln(FHP) �ln(DP) � �ln(FHP) �ln(DU) .

El � Ek � �ln(FHP) �ln(HRS) � �ln(FHP) �ln(QICAP).
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to density and scale are less than one at confidence levels that exceed 99 percent. In fact,
the majority of the t-values are so high that there is virtually no chance that returns to
either density or scale could actually exceed one for any of the shapes and most of the
processes at an average USPS mail processing plant.

It is also unlikely that many of the individual plants operate at levels that leave increas-
ing returns. We have calculated returns to density and scale for each plant/quarter in the
MODS samples. These have been used to compute the percentages of the plant/quarters
for which the returns to density and scale exceed one as weighted averages for the good
data using the conditional probabilities. These percentages are displayed for every shape
and process in Table 21.1. Only a few exceed 50 percent; most are very small numbers. The
USPS processing network as currently configured presents few opportunities to increase
productivity by consolidating processing plants to exploit increasing returns to scale.

It is usually the case in Table 21.1 that returns to scale exceed returns to density for a
shape or process. This occurs because our econometrics has yielded estimates of Ep and
Eu that are mostly positive and statistically significant. The explanation for this result is
that ln(DP) and ln(DU) may serve as either output measures, controls or some combina-
tion of the two in the production functions. As output measures for a network service
activity, we would expect their elasticities to be negative. As controls for an industrial
process, the elasticities are more likely to be positive, because ln(DP) and ln(DU) indi-
rectly represent the limitations on continuous operations imposed by the schedule of
arrivals and dispatches from the plant. Clearly, our results are best explained by the view
that mail processing is primarily an industrial process.

8. LABOR VARIABILITIES

The variabilities that are used to attribute USPS postal costs are the elasiticites of the inputs
for various cost categories with respect to single drivers that serve as intermediate output
proxies. Mail-processing labor is one of the cost categories and its driver is piece handlings.
Therefore, the mail-processing labor variability, �l, for a shape is d ln(HRS)/d ln(FHP), and
for a process is d ln(HRS)/d ln(TPF). The conventional microeconomic definition for �l is
that it is the elasticity of the derived demand for labor with respect to output.

The most direct econometric approach to estimating �l is to fit the derived demand for
labor as a function of piece handlings, relative prices and various controls, and then extract
the elasticity from the estimates. This is the route taken by Bozzo (2006), Roberts (2006),
Neels (2006) and all others who have submitted econometric estimates of mail-processing
labor variabilities derived from the MODS data in postal rate proceedings since 1997.

An alternative approach is to derive the variabilities from econometric estimates of pro-
duction functions by making one of many possible assumptions about the way that inputs
would be adjusted within a processing plant to deal with changes in output. Labor vari-
abilities for three such assumptions are shown in Table 21.1. The assumptions are as
follows:

1. Capital fixed. Labor variability is derived under the assumption that HRS is variable
but QICAP is fixed. This assumption best describes the operation of USPS mail-
processing plants in the very short run: �l � 1/El.
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2. Fixed input proportions. Labor variability is derived under the assumption that
HRS/QICAP is fixed; that is, HRS and QICAP respond proportionately to changes
in FHP or TPF. The variabilities of labor and capital are the same: �l � �k. This
assumption corresponds to the way that USPS and the PRC use the labor variabili-
ties in postal cost accounting. �l is regarded as a constant and is applied to both labor
costs and the associated mail-processing equipment cost categories. The practice is
called ‘piggy backing’. The assumption can be defended as an approximation to
USPS operating plans in the intermediate run. USPS does not rethink the way that it
equips and staffs its processing plants every time postal volumes change. Instead,
USPS rescales the existing levels of labor and equipment to handle such changes
without altering the input proportions. Reevaluations of the proportions are likely to
occur much less frequently and to be initiated by changes in equipment technology
and relative factor prices rather than volumes: �l � 1/(El � Ek).

3. Expansion path. Labor variability is derived under the assumption that HRS and
QICAP are maintained in an economically efficient combination at the relative
factor prices implied by the first-order conditions for minimizing cost under the pro-
duction function. This assumption corresponds to a long-run equilibrium in which
both HRS and QICAP are variable and USPS optimally adjusts the input levels at
its plants. Under this assumption, HRS and QICAP move in tandem along an
expansion path that is determined by a fixed ratio of factor prices. The variability
of labor, �l, the variability of capital, �k, and the elasticity of a Lagrange multiplier,
�
 � d ln(
)/d ln(FHP), are calculated by solving a system of three simultaneous
linear equations:

12

All but four of the mail-processing labor variabilities in Table 21.1 exceed 100 percent,
as would be expected for production functions exhibiting decreasing returns to density.
There is also a general tendency for the variabilities to progress from highest to lowest in
order from short to long run. However, the long-run expansion path variabilities still
remain mostly above 100 percent.

9. THE FITS OF THE SWITCHING REGRESSIONS

There are large differences in labor and capital productivity among the mail-processing
plants covered by MODS. These differences occur with every shape of mail and for every
process. At first glance, they seem hard to explain. The plants all use the same types of
processing machines and other equipment. They are organized and staffed following the
same USPS guidelines. And, they are all managed according to the same practices and
standards. Our ML estimates of the translog production functions largely solve this
puzzle. Selections of shape-level and process-level ML estimation results for the stochas-
tic switching regressions are provided in Tables 21.2 and 21.3.

El�l � Ek�k � 1.

!lk�l � (2.0!kk � Ek)�k � Ek�
 � 0,

(2.0!ll � El)�l � !lk�k � El�
 � 0,
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One of the explanations to be found in the tables is that there can be a lot of bad data
in the MODS samples. The percentage of bad data found by the ML estimator ranges
from about 1.5 percent (letters) to over 20 percent (flats). The high t-values for these per-
centages mean that there is little chance that the MODS samples could actually be clean.
Much of the bad data consists of observations of extreme values for FHP (or TPF), HRS
or QICAP. Such observations are assigned high conditional probabilities of being bad by
the ML estimator. Observations with high conditional probabilities also appear mostly in
runs and clusters associated with single plants.

Our translog model fits the MODS samples quite well despite the bad data. The standard
deviation of the errors and adjusted R-squares for the good and bad equations have been
corrected for degrees of freedom as is customary for an OLS regression. The R-squares for
the good equations are mostly in the neighborhood of 0.89 to 0.98. The R-squares for the
bad equations are somewhat lower, but still high enough to show in every case that the bad
data is explained well by a distinct linear regime. The standard errors of the good equations
are also all less than the standard errors for the bad equations. This accords well with the
kinds of dirty samples analyzed in Pearsall (2007). Notice, however, that the standard errors
for the good and bad equations for the AFSM 100s in Table 21.3 are almost identical. This
has happened because many of the observations given high conditional probabilities of
being bad correspond to periods when the new AFSM 100s were first installed in the plants.
The bad equation is actually a fit of the production function for a startup regime.

Coefficient estimates and t-values are shown for the good equations in Tables 21.2 and
21.3. Many of the t-values in every equation are far above (absolutely) the critical values
for two-tailed tests at the 95 and 99 percent confidence levels. The reason for this high
precision in the good data estimates is that the MODS samples are so large that the ML
estimator can accurately separate the effects of the good and bad data. The overall
conclusions to be drawn from the estimates are, first, that the variables and controls
included in the production functions as explanatory variables are statistically effective,
and, second, that a two-regime stochastic switching regression is a good model of the
flawed data generation process that produced the dirty MODS samples.

10. OTHER DETERMINANTS OF PRODUCTIVITY

Returns to density and scale are only one of many statistically significant determinants of
productivity. There are high t-values for one or more of the variables in every group of
controls in almost every equation. This is somewhat surprising, since many of the con-
trols are no better than indirect proxies for plant characteristics that USPS will not dis-
close. This means that there are often multiple explanations for the signs and magnitudes
of the coefficient estimates. Nevertheless, the estimates exhibit patterns that support
several hypotheses regarding the determinants of mail-processing productivity besides
returns to density and scale.

There is a seasonal pattern to productivity. USPS processing plants are less productive
during postal quarter 4 (July to September) than at other times of the year. Most regular
employees take their annual vacations during this quarter. The drop in productivity could
also be explained by seasonal variations in weight and other hedonic properties of the
average piece.
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Productivity for most shapes and processes exhibits a highly significant autonomous
trend. For automated and mechanized processes the trend is usually positive; for manual
processes it is negative. These patterns could be the result of frequent minor upgrades to
processing equipment and a deterioration of labor skills as manual sorting is slowly
phased out. The increasing use of automated processes could also be leaving more difficult
residues of pieces to be processed by hand.

The delivery point shares are proportions of DP, a variable that indirectly controls for
arrival and dispatch schedule effects on productivity. The coefficient estimates for the
delivery point shares follow a distinct pattern confirming that schedule effects are among
the most important determinants of productivity. City central deliveries (CENT) and P.O.
boxes (POBOX) are made early in the day, while other deliveries are often made later.
Deliveries to rural boxes (RB) take longer than city and suburban deliveries, so the mail
must be available to rural carriers at delivery units early in the day. A plant with high per-
centages of CENT, RB and POBOX delivery points in its service territory is likely to have
a more difficult schedule for dispatching processed incoming mail to its delivery units.
This explains the evident tendency for the coefficients of these shares to have a negative
sign. On the other hand, mail delivered to central box units (NDCBU) is usually delivery
point sorted only to the box unit. Such mail requires fewer handlings and appears to be
somewhat easier to process than other mail. The estimated coefficients for the NDCBU
share of delivery points are mostly positive numbers.

For the shape-level production functions in Table 21.2 we would expect presorted mail to
increase productivity because it requires fewer piece handlings to process. For the process-
level functions in Table 21.3 we would also expect presorted mail to increase productivity,
but for a different reason. Presorted mail conforms to a higher standard of address hygiene
than other mail. This should make this mail easier to process using automated equipment.
These effects seem to be present in the coefficients for letters, flats, cancellations and the
processes for letters and flats, except for the AFSM 100. For parcels, the coefficients of the
subclass and worksharing shares probably are a reflection of the effect on processing of
differences in the average sizes and weights of parcels in the categories. First-class parcels,
priority parcels and media mail all tend to be smaller and lighter than other kinds of parcels.

Outgoing (originating) mail usually requires less processing than incoming (destinat-
ing) mail because it is sorted to fewer divisions. The coefficients of ln(origin/destination)
in Table 21.2 are all positive and highly significant. However, this cannot be the only effect
represented by the variable ‘ln(origin/destination)’. The coefficient is also positive and
significant in most of the shape-level equations that distinguish between incoming and
outgoing pieces, and in most of the non-manual process-level equations with ln(TPF) as
the output variable, including those shown in Table 21.3. The positive coefficients in these
other equations show that a higher proportion of outgoing (originating) mail for a shape
makes all of the automated and mechanized processes for the shape more productive. It
is not really clear why this occurs. It may be that large mailers, whose mail is generally
easier to process, prefer to submit their mailings at the more productive plants, or that
USPS caters to large mailers by making the plants they use more productive.

The shape dummy variables for parcels, priority and cancellations were included to
indirectly identify the type of plant. Significant coefficients with both positive and nega-
tive values can be found frequently among our estimates of these coefficients, so the type
of plant is an important determinant of productivity.
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The process dummy variables in each of the production functions identify the equip-
ment present in the plant that pertains to the associated mail shape. Most of the estimated
coefficients for these dummy variables turn out to be statistically significant at very high
levels, including all of those shown in Tables 21.2 and 21.3. The presence or absence of
complementary shape-specific equipment appears to be the single most important deter-
minant of productivity at USPS processing plants.

The coefficients of the process dummies often display a distinctive pattern. The largest
negative coefficient is frequently associated with the most modern automated type of
equipment. The coefficients then grow smaller absolutely as they progress through the
equipment types, and sometimes turn positive as the oldest and least automated types are
reached. We can observe this pattern in many of the fits shown in the tables. For example,
the coefficient for the variable ‘No DBCS’ is negative and is the largest absolutely in the
equations for ‘All Letters’ and ‘Manual Letters’. Next in order are the negative coefficients
for ‘No OCR’ and ‘No AFCS’. The coefficient for ‘No MPBS’, the oldest of the letter-
processing machines, is still negative but is smaller than the others.

The labor skill shares are the least satisfactory of the controls included in the equations.
They are included because the MODS data offer no other choice for representing the skill
levels of a plant’s labor force. The shares actually represent work assignments that may or
may not be based on skills. The coefficient estimates are usually significant, but difficult
to interpret as evidence of the effects of specific labor skills on productivity.

The elasticities of FHP (or TPF) with respect to HRS, QICAP, DP and DU have been
computed from the formulas given earlier and are displayed at the bottom of Table 21.2
and Table 21.3 for the selected production functions.13 All of the estimated elasticities for
labor, El, are greater than zero, but less than one as would be expected for an input subject
to diminishing returns. The elasticities for capital, Ek, are also in the zero-to-one range
with a few process-level exceptions, of which only one (AFSM 100 Outbound) is statisti-
cally significant. The capital elasticities are typically much smaller than the labor elastic-
ities, especially for the manual processes. All cancellations and cancellation using the
AFCSs are an important exception in which the labor and capital elasticities are almost
equal. As we have already noted, the estimates of Ep and Eu in Tables 21.2 and 21.3 are
mostly positive and statistically significant.

11. CONCLUSION

Our stochastic switching models’ ML estimates supply a statistically robust answer to the
question in our title. USPS mail processing is commonly conducted in its plants at volume
levels that are sufficiently high to encounter decreasing returns to density and scale. We
have found generally decreasing returns for plant-level aggregates of pieces handled by
shape, for pieces fed in single processes, and for most inbound and outbound sub-streams
of the mail.

The finding that the average plant operates in the region of decreasing returns to density
translates under several assumptions into average variabilities for labor in mail process-
ing that exceed 100 percent. Therefore, the use of variabilities that are less than 100
percent in USPS cost accounting will lead to under-estimates of the marginal costs and
attributable costs of processing the mail.
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The finding that individual processing plants mostly operate in the region of decreas-
ing returns to scale means that simply consolidating plants is not likely to be an effective
strategy for restructuring the USPS network with the object of increasing aggregate pro-
ductivity. Most plant consolidations will actually decrease the volume that can be
processed by the same equipment and labor force in the consolidated plants.

Finally, there are strong indications in our estimates that factors other than scale are
chiefly responsible for the large observable differences in average productivities among
USPS plants. Perhaps the most interesting of these indications is the indirect evidence we
have found that productivity is affected by a plant’s ability to schedule arrivals and dis-
patches to smooth mail flows through its processing operations.

NOTES

* The views expressed in this chapter are those of the authors and do not necessarily represent the opinions
of the US Postal Regulatory Commission.

1. For a more detailed description of USPS mail processing, see Bozzo (2006, pp. 11–33).
2. In the cost studies increasing returns are evidenced by decreasing marginal costs and vice versa. Merewitz

(1971), Gupta (1982), Strack (1986), Moriarty et al. (2006), Cohen and Chu (1997), Roberts (2006), and
Neels (2006), have all found decreasing returns at some level of mail processing and/or overall postal oper-
ations. On the other hand, studies by Panzar (1984), Kleindorfer (1987), Norsworthy et al. (1991), Bradley
and Colvin (1999), Bozzo (2006), Wells (1987), and Rogerson and Takis (1993) have found increasing returns.

3. See Bozzo (2006). The samples were constructed by combining three separate worksheets found in Library
References sponsored by Bozzo for the R2006-1 omnibus rate proceeding. The Library References accom-
panied his direct testimony on behalf of USPS and his responses to interrogatories and requests for data
from United Parcel Service and the PRC’s Office of the Consumer Advocate.

4. Bozzo (2006) and Roberts (2006) fit derived demand functions for labor to the MODS data under the
assumption that capital is fixed. This is clearly not a desirable underlying assumption for a study of returns
to density and scale. Bozzo and Roberts’ models also explicitly rely on an assumption that USPS mail pro-
cessing is both economically and technologically efficient. Fitting production functions, as we have done,
enlists only the assumption that processing is technologically efficient.

5. There is an element of moral hazard in the MODS self-collection system that may cause malfunctions. The
MODS reports are used by USPS’s higher management partly to assess the performance of the plants.

6. See, especially, Neels (2006) on the specific defects in the screens proposed by Bozzo (2006).
7. The ML estimator is described in detail in a manuscript that is available from one of the authors. See

Pearsall (2007). ML estimation of stochastic switching models was first proposed by Quandt (1972) and
extended by Goldfeld and Quandt (1973), Maddala and Nelson (1975), Quandt and Ramsey (1978),
Hartley (1978), and Hamilton (1989). Exogenous switching regression models have been widely applied
and have been particularly useful in econometric studies of markets in disequilibrium. ML estimation is
the method of choice for fitting stochastic switching models with exogenous fixed-probability independent
switching. It is the method described in Judge et al. (1985) and implemented in statistical software such as
LIMDEP and SAS.

8. Several of these worksheets are available at www.prc.gov.
9. Our practice was to choose the capital equipment index that most closely matched the shape or process for

each equation. Manual processes were fit using the capital index for postal support equipment (QIPSE).
The capital index for SPBS was calculated as a residual by subtracting all other mechanized process indices
from the index for total mechanized processing equipment (QIMPE). The capital service indices for the
incoming and outgoing equations were pre-multiplied by the proportions of incoming and outgoing work
hours.

10. The derivation of the formula for returns to scale is as follows:

the production function with y � FHP, TPF (or TPH), P � DP, U � DU, L � HRS
and K � QICAP; k is the measure of returns to scale and t is a scale factor such that t�1 gives
an input/output combination on the production function.

differentiate through with respect to t. , , and are the
partials of f with respect to P, U, L and K.

fkflfufpktk�1y � ktk�1fpP � ktk�1fuU � flL � fkK

tky � f(tkP,tkU,tL,tK)
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the equation must hold at t � 1.
solve for k.

divide the numerator and denominator by y.
substitute the elasticities in the formula for k.

A measure of returns to scale that treats DP and DU as controls is El � Ek � Ep � Eu. Statistical tests
under the null hypothesis (H0) that returns to scale equal one yield identical results for this measure and
for the measure with DP and DU treated as outputs. However, El � Ek � Ep � Eu is linear in the parame-
ter estimates of the translog production function, so its standard deviation can be computed readily from
the variance–covariance matrix of the estimates. The t-values for returns to scale shown in Table 21.1 are
computed for .

11. The calculation of the asymptotic variance–covariance matrix follows Maddala (1977, pp. 176–81) and
Judge et al. (1985, pp. 177–80). Standard deviations are calculated for linear combinations of the model
parameters. A complete description is in Pearsall (2007).

12. These equations are derived from the first-order conditions for a cost minimization with the translog pro-
duction function as a constraint and the price ratio Pk/Pl held constant. The translog production function
can be reduced to the terms involving ln(HRS) and ln(QICAP) for this derivation:

� other terms.

Using the elasticities for HRS and QICAP, the first-order conditions are as follows:

, , and the translog production function.

With ln(HRS), ln(QICAP), 
 and ln(FHP) as variables, we take total differentials of the first-order con-
ditions with Pk/Pl held fixed:

.

Next, we substitute for HRS and from the first-order conditions and divide the first two
differentials by 
. After rearranging terms, the differentials become:

,

,

.

We divide all three differentials through by d ln (FHP). The equations in the text result from the substitutions
�l � d ln(HRS)/d ln(FHP), �k � d ln(QICAP)/d ln(FHP), and �
 � d ln(
)/d ln(FHP) � (d
/
)/d ln(FHP).

13. The 14 ‘beta’ coefficients of the translog segments of the production functions do not have individual eco-
nomic meanings. However, these coefficients collectively determine the elasticities. The calculations used
the sample means of ln(HRS), ln(QICAP), ln(DP) and ln(DU) for the good data. Standard deviations were
derived from the asymptotic variance–covariance matrices for the ML estimator and used to compute the
t-values for the elasticities.
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